
Asymptotes 
(Linear asymptotes) 

 

 

Our advice is to first study well the limits of functions. 

 

Some professors like to asymptote function tests as  ” behavior functions in the function domain”,and  how they  

 

work you work the same… 

 

Another thing, some professors do not examine horizontal asymptote as a separate, but work  it in the oblique  

 

asymptotes, we'll try to explain each of asymptote in particular. 

 

 

An asymptote of a real-valued function y = f(x) is a curve which describes the behavior of f as either x or y goes to  

 

infinity. There are three types of linear asymptote: 

 

 

- vertical 
 

- horizontal  
 

- oblique  
 

 

 

 Vertical asymptotes 

 

 

Potential vertical asymptote is  in “the interruption”  of the function domain . If ,for example, point  x = Θ   is  

 

the interruption point, we must examine how  function will  "act" in the vicinity of that point, this  require two  

 

limes: 

 

                                                    
0;

)(lim
→+Θ→ εε whenx

xf        and    
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→−Θ→ εε whenx
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If the solutions of these two limits are   +∞  or  - ∞  , then x = Θ   is vertical asymptote. 

 

 

 

Horizontal asymptotes 

 

 

Here we  are looking for two limits )(lim xf
x +∞→

      and       )(lim xf
x −∞→

. If for solution  we get a number, 

for example, Ω  , then y = Ω   is  horizontal asymptote, and if we get + ∞ or - ∞ then  we say that   

 

there is no horizontal asymptote.  

 

 



Oblique asymptotes 

 

 

Oblique asymptote is :      y = kx + n    where are: 

 

        k=
±∞→x

lim
x

xf )(
         and      n= ])([lim kxxf

x
−

±∞→
   

 

Note that y = kx + n    is never a vertical asymptote, but can be a horizontal asymptote if n=0 (in which case it is  

not an oblique asymptote). Or: 

 

If  we have   horizontal asymptote,  there is  not oblique !  Remember! 

 

 
Before we begin with examples , we will remind you how to search the function domain.                                                 

 

The domain  (or replacement set) of a given function is the set of "input" values for which the function is defined. 

 

 

Domain of function: 
 

        If  we have the rational function
)(

)(

xQ

xP
 ,  then must be  Q(x)≠ 0 

        If  we have  ln ⊗ ,   then  ⊗ >0   

                       

        If  we have Θ ,    then   Θ ≥0   

 

        If  we have 3 @ , R∈@  

   

        The function e
x
  is everywhere defined 

 

        If  we have  arcsin @  then is 1@1 ≤≤−   ….etc… 

 

 

 

EXAMPLES 
 

1. Find asymptote for the following functions: 
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Solution: 
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vertical asymptote 

 
 

The function is defined for  01 ≠−x , that is, 1≠x  . This tells us that x = 1 can be vertical asymptote. 
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What does this mean on GRAFIK?   Let's take a look: 
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= +∞    This is a yellow line on the graphics, which means that when x approaching 1 with 

the positive side  (+ ε) , then function tends to ∞. 

 

 

 

0,1
1

1
lim

→−→
−

+

εεx
x

x
= - ∞   This is a red line on the graphics, which means that when x approaching 1 with  

 

the negative side (-ε),then function tends to -∞ . 

 

 



Horizontal asymptote 

 

1
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= 1, which means that the y = 1  is horizontal asymptote and we not have oblique asymptote.                     
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vertical asymptote: 

 

The function is defined for  01 ≠−x               1≠x ,                      x = 1 can be vertical asymptote. 
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horizontal asymptote: 
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oblique asymptote: 
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 k and  n change in the formula: y = kx + n, and get the  oblique  asymptote:      y = x + 1       
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 Blue line describes the behavior of function . 
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vertical asymptote: 

 
 

The function is defined for  01 2 ≠− x                 0)1)(1( ≠+− xx                1≠x   and  1−≠x  

 

This means that we have to find  two limes, for 1 and –1, with "both" sides. 
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horizontal asymptote: 
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2) Find asymptote for the following functions: 
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Solution: 
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vertical asymptote: 
 

 

The function is defined for 0≠x ,and  x = 0  is  potential vertical asymptote. 
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This means that when x tends to zero on the left, the negative side, the function tends to zero,  in  

 

the graphics display  with the arrow. 
 



horizontal asymptote: 

 

 

+∞→x

xe

1

lim = 10

1

==∞+ ee  

 

−∞→x

xe

1

lim = 10

1

==∞− ee                So y = 1 is a horizontal asymptote! 

 

y

x
.1 y=1

0

 
 

 

 

 

b)   xxey

1

=  

 

 

vertical asymptote: 

 

 

The function is defined for the 0≠x ;  x = 0  is  potential vertical asymptote. 
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horizontal asymptote: 
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So, no horizontal asymptote, and we have to look for oblique asymptote. 

 

 

oblique asymptote: 
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We have oblique asymptote:    y = x +1 
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3. Find asymptote for function     
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Solution: 

 

The function is defined everywhere,because 042 >+x ,for every x, and it tells us that it has no vertical asymptote. 

 

horizontal asymptote: 
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Look out! As we get below the absolute value, we  have to separate limits  for the + ∞  and  - ∞  
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Very unusual situation that still occurs in root functions: 

 

If x tends +∞  horizontal asymptote is y = 1  

 

If x tends to -∞  horizontal asymptote is y = -1  

 

 

 

The picture would look like this: 
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4. Find asymptote for function     
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Solution: 

 

 

 

As always, first we  must examine the function domain. 
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 ∞−                            -1 -1                                2 2                            ∞+        

              x-2                  -                    -                    + 

              x+1                  -                   +                    + 

            
1

2

+

−

x

x
 

                 +                   -                    + 

 

 

This therefore means that the function is defined  ),2()1,( ∞∪−−∞∈∀x  

 

Function does not exist between –1 and 2. 
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That means that we will ask for x = 2 limit only on the right side, and x = -1 only on the left side! 
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horizontal asymptote: 

 

=
+

−
±∞→ 1

2
lnlim
x

x

x
01ln

1

2
limln ==

+

−
±∞→ x

x

x
       So:  y = 0 is a horizontal asymptote. (Blue line) 

 

y=x+1

x

y

.

x=2

.
-1 0

x=-1

2

 
 

 

 

 

  

        

 

 

 

 


